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ABSTRACT

An analysis is presented of the buckling of the leading edge of a thin solid
wing, tapered linearly chordwise, under the combined action of spanwise
thermal stress and aerodynamic load. Results are presented in the form of
interaction curves for various degress of leading-edge bluntness.

INTRODUCTION

The buckling of a sharp leading edge due to thermal stresses arising from
kinetic heating has been treated at Mansfield [1]. Biot [2], in a paper deal-
ing with the divergence of supersonic wings, has analysed the leading-edge
buckling of a wing under aerodynamic loading. In a further paper [3], Biot
examines the effect of a combination of thermal and aerodynamic loading
on the torsional stability of a wing.

Here, leading-edge buckling under the same combination of loads is
treated, and interaction curves are given for a wing whose thickness tapers
linearly chordwise for various degrees of leading-edge bluntness. Inci-
dentally, an estimate of the effect of bluntness on leading-edge buckling
under thermal stress alone is obtained and it can be seen that, while there
is no singular behaviour for a sharp leading edge, the transition from
perfectly sharp to a small but practical bluntness factor leads to a sig-
nificant increase in the critical stress.
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Leading-edge buckling, particularly for sharp leading edges and where
thermal stresses are dominant, is a local effect and not likely to lead to a
direct failure. In fact, its occurrence will relieve the compressive stresses at
the leading edge and so decrease the losses of overall flexural and torsional
stiffness due to thermal stress [4-7]. However, this factor is likely to be
outweighed by the effect of the deformed leading edge on the pressure
distribution and airflow over the wing. The former effect is described by
Biot [2,3] and the latter would cause increased turbulence and hence
aggravate the temperature gradients in the wing.

SYMBOLS

y chordwise and spanwise coordinates

downward deflection

wing thickness

half chord length
ho  thickness at midchord
h1  thickness at leading edge

I)  flexural rigidity

Poisson's ratio

flexural rigidity at midchord
cr„ spanwise stress

ull' spanwise stress at leading edge
Mach number

air density
V speed of sound

local lift on the wing
qo = 23/2p1-2/A/(312 — 1)
X, Y nondimensional coordinates
V2 = a2/ax-2 avay2

a

1 — (1

gocV1),
k2 = ho 0-„‘ elir2D0

spanwise half-wavelength
7r/I

r(X) chordwise variation of rigidity

s(X)  chordwise variat ion of thermal stress

.1(X) E a  „X' chordwise variation of deflection
n



LEADING-EDGE BUCKLING 1043

f2( ) ), .1-3(x)

A  2, A 3

02, 03,

A
02, 03

=

defined by Eq. (13)

arbitrary constants

defined by Eq. (14)

0203 — 034,2
k*2 values of k1 , k2, for which A = 0

OUTLINE OF PROBLEM AND ASSUMPTIONS

The problem treated is t hat of the buckling of the leading edge of a wing
of symmetrical double wedge cross section and infinite aspect ratio,
flying at zero incidence and acted upon by both thermal and aerodynamic
loadings. The assumption of zero incidence is made because it is the purpose
of the present work to study the stability problem in isolat ion. The effect of
a finite angle of attack is considered by Biot [2,3 ]. For the purpose of
simplification of the analysis and calculations, the wing is assumed to be
clamped along the midchord. The error arising from this assumption
should be small because the trailing edge of the wing is stabilised by the
aerodynamic load and so will not buckle. Further, in cases where the
leading edge is fairly sharp and thermal stresses are dominant, buckling is
confined to a region near the leading edge and the midchord has no tend-
ency to deform. The spanwise thermal stresses are self-equilibrating over
the wing cross section, compressive at the leading and trailing edges and
tensile in the midchord region. They are here assumed to vary para-
bolically chordwise, thus embodying the general character of many
practical distributions. The aerodynamic loading is taken to be that given
by thin aerofoil theory that is, normal to the middle surface of the wing
and directly proportional to the local slope of the middle surface.

ANALYSIS

The spanwise middle surface stress o- must be self-equilibrating over the
cross section of the wing, so that

f
_chu„dx =  0 = f xha„ clx (1)

following the coordinate system and notation shown in Fig. 1. Thus if cr., is
taken to obey a parabolic law,

cry = cry'le)(2 —  m)(x/c)2  — 4 + 3m l /(8 — 3m) (2)



1044 FOURTH CONGRESS — AERONAUTICAL SCIENCES

The local lift on the wing is assumed to be given by thin aerofoil theory,
that is

q = 2M2 pV2 —aw/N/ (1112 —1) = qo —Ow
ax ax

Now the differential equation to be satisfied by the buckled plate is

( 02 a 2\ 02 a2

\ax2
3 y2){D 2

(1 0 32D 02w
ox ay ax 2

	

32D
a2w

	

= go 3x ay2

where cr„is taken to be positive in compression and D is given by

D = Do (1 — m x/c )3

WING ASSUMED

CLAMPED ALONG


MID-CHORD.

DEFLECTED MIDDLE SURFACE
OF CHORDWISECROSS-SECTION

tig(t) SIN

NORMAL LOAD 1.10 bx

WIND
DIRECTION




cry,

0

Figure 1. Load systems and notation.
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It  is  now convenient to introduce the parameters

X = x/c1,  Y = y/e

r(X) = D/D, = (1 — mX)3


s(X)  =  ho-y/ho =  (1 — mX)16(2 — m)X2 — 4 + 3m1/(8 — 3m)

	

k1 = qoc3/Do , k2 =  ho u0,c2/7r2Do
(5)

V2  _ a2/a x2 + 32/(91- 2

and the subscript 1 denotes  d/dX.  Thus, Eq. (4) becomes:

	

a 2 aw a3w
rV4w  2r' (V w) (a2w  a2w k + 7T-24.2s — 0 (6)ax ax2 ax a y2

However, since the midchord of the wing is assumed clamped, it is neces-
sary to consider only the forward half of the wing and so the negative sign
before the term in k1 applies.

Now, taking a buckling mode of the form

	

w = f(X)  sin pY  (7)

where the spanwise half-wavelength

= 7//),

substituting into Eq. (6) and collecting terms, the following ordinary
differential equation is obtained for .f:

_ in."03 fno _ 6m(1 —  mX)2 fill+  2(1 --  mX)13m2

 — P2

— inX) 21.f" +  161717)2(1 —  niX )2 — kILP p2(1

— mX)[p2(1  —  mX)2  — 6vm2 — 71-2k2f6(2 — in)X2 — 4

+  3m  f/(8 — 3m)]  f = 0 (8)

If now, a power series is assumed for!,

f = E (9)
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and is substituted into Eq. (8), the following recurrence relation for the
an's is obtained:

3m(n + 2)a„+3 

an+4

n + 4

12p2 — 3m2(n + 2)(n + 1)lan+2
(n + 4)(n + 3)

{6mp2(n + 1) — m3(n + 2)(n + 1)n —
(n + 4)(n + 3)(n + 2)

P21/12 — 6m2(n2 + V) + 7r2k2(11 — 3m)/ (8 — 3m)lan
(n + 4)(n + 3)(n + 2)(n + 1)

mp2{2m2(n2 — 1 + — 3p2 — ir2k2(4 — 3m)/(8 — 3m)lan-1
(n + 4)(n + 3)(n + 2)(n + 1)

3p21 m2p2 2,2k2 (2 _ ,,z)/ (8 — 3m)Ian_2

(n + 4)(n + 3)(n + 2)(n + 1)

inp2{ m2p2 67r2k2(2 m)/ (8 — 3,n)lan_3

(n + 4)(n + 3)(n + 2)(n + 1) (10)

where

n = 0, 1, 2, 3, ...

and by definition

a_3 = 0 = a_2 a_1

Thus the function f(X) can be determined in terms of the four arbitrary
constants an, al, a2, a3.

The boundary conditions at the midchord are:

w = 0 = aw/a.r

giving

ao = 0 = a, (11)

while at the leading edge

92W 92 a3w a3W 


ax2 V- = = + (2 — y) on x = cay2 aX3 axay2

or

P (l ) — vp2f(1) 0 = f " (1) — (2 — v)p2P(1) (12)
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It  is  now convenient to introduce the functions:

f, (X ) = x2+ E a2,„X"


f3(x) = x3+ E a3,„X"
n=4

and write

.f(X) = A 2,1.2(X) ± A 31.3(X) (13)

so that it becomes possible to determine all the 03., 5 and a. 's from
Eq. (10). Thus writing

= fik' (1) - Piffk( l )

= k (k — 1) — E lit(n — 1) — vp2 ak,„
n=4

= (1) — (2 — v) p2.fi (1) (14)

= (k — 1)(k — 2) — (2 — v)p21 + En{(n — 1)(n — 2)
n=4

— (2 — v) p2l ah,„

k = 2, 3

the condition for buckling is

02 4'3 — 042 = (15)

It is clear that A is a function of five variables

A = A(m, p, 1i , k2, y)

Throughout the numerical work Poisson's ratio is taken to have the value
0.3. If particular values of  nu  and ki are chos(41, then for every positive
value of p there will exist a series of values of ko for which

Suppose /1 is the numerically smallest of these values, then the required
solution is obtained by varying p until 4.1' becomes a true minimum.
Owing to the complexity of the functions involved, this minimum value of
/1 cannot he determined analytically, so that a munerical procedure must
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be adopted. It is clearly also possible to choose part icular values of m and
k2and to find the minimum value of kt as a funct ion of p. In practice, one
of these procedures is usually more convenient than the other, depending
on the particular values under consideration.

The numerical work was performed using the IBM 7090 located at the
Weapons Research Establishment, Salisbury, South Australia.

RESULTS AND DISCUSSION

Figure 2 shows the interaction between the critical aerodynamic load
parameter k1 and the critical thermal stress paramet er k2 for a number of
values of the bluntness factor a. For a = 0, the critical value of k2 in the
absence of kl, and the limit of the critical values of ki ill the absence of k2
are indicated. As is explained by Biot [2], this limit is finite even though
buckling can occur at zero load for a = 0.

Because of the poor convergence of the series for small a, the smallest
value for which an interaction curve is obtained is a — 0.05. For this case,

7


6


5

4 a • I

0-8

–3

°C2

a • 0.6

a•0.4

4'2  •• •• 
23

Figure 2. The interaction between critical thermal and aerodynamic load parameters.
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Figure 3. The variation of spanwise wavelength wit h critical

aerodynamic load parameter.

3

2.5

0 5

az 0.4 0.6 0-8 1,0
a --.

Figure 4. The variation of critical thermal stress wit h bluntness

factor in the absence of aerodynamic load.
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more than 500 terms were required for each series. Although interaction

curves for smaller values of a and in part icular their limit as a  0 would

be of interest, it is unlikely that a leading edge designed for operation at

high supersonic speed would have a bluntness factor less than 0.05.
In Fig. 3 the spanwise N\avelengt h is plotted against the critical values of

the rorrespondg values of k2 being understood to be those given by

Fig. 2. It can he seen that wavelength tends to decrease as the leading edge

heroines sharper and when the thermal stresses are dominant, the effect of

increasing aerodynamic load being to increase the wavelength.

Ki. 0-00'

K2 .0'57

K2-0.40

-1.30
K2-0.27

-1-74

K2-0-00,

f(x)
_lc, -0.00

K2.0.87

KiZ00
K2 -02

K, -245
K2- Oa
K .2.39
K2=0.00

K1-0.00
K2 -1-64

K1-4.00
K2-0.99

K1-4.40
K 2.0.9 1

K1-4-47
K2.0.00

K,  -0.00
K2-2-56

K, • 5-00
K2 • 1431

K2 • 1.28
K -6.34
K

o X 1

Figure 5. Some typical phordwise 1111ale shapes.

a-0.05

a-0 2

a•0.6

a-1.0
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Calculation shows that in many practical cases ki is less than unity and
thus, as can be seen from Fig. 2, the aerodynamic load has little effect on
the critical thermal stress. Exceptions to this would occur for very thin
wings (thickness to chord ratio of 1 per cent or less) or for wings flying at
high speed and low altitude. Figure 4 shows the increase in critical thermal
stress with bluntness factor in the absence of aerodynamic load. As pre-
dicted by Mansfield [1],although there is no singular behaviour for a sharp
leading edge, the effect of bluntness is marked. For a bluntness factor of
0.1, the critical thermal stress increases by about 50 per cent over the
value for a sharp leading edge.

It is of interest to obtain an estimate of the numerical value of tempera-
ture difference at which buckling would occur. If the relationship bet ween
k2 and  a  shown in Fig. 4 is treated as linear, the temperature difference
for a steel wing at buckling may be written:

h  T 16 X 104(2")2
(1 + 6a)

2c

indicating that buckling may frequently be an important factor in the
design of a leading edge.

Figure 5 shows the chordwise deflection in the initially buckled state for
a range of critical values of the parameters. Some estimate of the limita-
tions imposed by the assumption of a clamped midchord may be obtained
from this figure. The expected tendencies are observed, namely, that the
blunter the wing, the farther from the leading edge do the buckles extend,
and that for a given bluntness the effect of increasing the proportion of
aerodynamic load is to enlarge the buckled area.
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COMMENTARY

PROF. DR. A. VAN DER NEUT (Technical University, Delft, Netherlands):
In reply to Prof. Hoff's question: The need for 500 terms of the series originates
from the chosen location of the origin of the coordinates  x.  The origin lies at mod-
chord where the deflections are extremely small, whereas the interesting part of
the deflection curve is near the leading edge. If the origin would have been chosen
at the leading edge, I presume, the solution could have been obtained with a small
number of terms.

I might put forward another question. The very interesting aspect of this
investigation is the inclusion of the aerodynamic effect as it occurs with stationary
air flow. One could think of the possibility of leading-edge flutter. Then the time-
dependent aerodynamic forces of unstationary air flow come into the picture.
However, we have learned from the present communication that the aerodynamic
forces do affect the static instability to a slight extent only. My question is: May
it then be conjectured that there exists no risk of leading-edge flutter in practice?

REPLY

The author would like to thank Professor van der Neut for his interesting
comments. While it is true that better convergence might well have been obtained
using a different origin of coordinates, the very large number of terms was only
required when the leading edge was fairly sharp (a =  1/20) and a genuine singularity
exists for a perfectly sharp edge. A different choice of origin would have increased
the complexity of the analysis and the numerical work in that the buckling deter-
minant would have become 4 X 4 rather than 2 X 2.

In regard to the question about flutter—it is obviously very difficult to draw
firm conclusions from the present example. Furthermore, a simple extension of
the analysis to include vibration of the leading edge would m)t include the effect
of unsteady airflow over the wing. I think that this question could probably best
be resolved through an experimental program, possibly backed by an approximate
analysis.




